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Abstract—WiFi-based indoor localization is a complex
problem due to high variations of radio frequency (RF) signals
in indoor environment. Many popular techniques based on RF
fingerprinting require an extensive site survey, which involves
time intensive logging of Received Signal Strength (RSS). This
paper presents CAIL, a smartphone-based indoor localization
system, that utilizes the site survey done by a phone to create
an RF fingerprint which is utilized by new phones for location
prediction. CAIL neither makes any assumptions about the site
and placement of access points (APs) nor does it require any
additional infrastructure. CAIL provides these new phones a
minimal set of best locations to log at, thereby reducing the
war-driving efforts for these phones. CAIL was tested in a
building of six floors. Experimental results show that CAIL
provides an accuracy of 76%, comparable to the accuracy of
81% on complete site survey, with an 84% reduction in effort.

I. INTRODUCTION

Indoor localization has become an integral part of
context-aware applications, such as monitoring user’s
movements, attendance systems, location-aware search results
for content filtering, etc. Many Bluetooth and WiFi-based
techniques use data from wireless hardware, such as Simple
Network Management Protocol (SNMP) traps and Bluetooth
beacons. However, these approaches are unfavorable due to
numerous reasons. Bluetooth beacons involve an additional
cost of installation of infrastructure and require administrative
access to network hardware. SNMP traps are messages sent
by mobile phones to SNMP managers, typically used to
monitor the connected phones within a network and modify
them as required. Traps contain user data that endanger their
privacy by exposing information of their connected phones
to attacks. RF-based techniques eliminate the additional
infrastructure requirements and the privacy concerns by
creating an RF fingerprint of the building. The users are able
to locate their position by mapping of the signals from their
phone onto the WiFi fingerprint. Existing solutions require
an extensive site survey to build these RF maps [1].

Traditional fingerprinting techniques involves calibration.
Calibration of a phone uses training data from the entire
environment, to create a fingerprint for testing of that phone.
This paper defines a new technique called Cross-calibration,
detailed in section III.B. Cross-calibration uses the complete
set of training data available for one phone to calibrate
another phone, which does not have the training data available
for the entire environment. CAIL uses a phone, called
primary phone, to log into the site once to create a
fingerprint, which is used by other phones to determine
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their location. This is possible due to the cross-calibration
of these new phones against the primary phone. For
cross-calibration, these new phones have to log only at the
best locations in the environment, identified by CAIL using
a technique called recursive bagging, described in III.C. A
key advantage of this technique is that it does not make any
assumptions about the environment being logged, distribution
of APs and their transmit power, unlike earlier work [2], [3].
It is not battery hogging for the phone as the user is required
to log only at a few locations that are already identified
by the system. This optimization gives accuracy which is
comparable to the accuracy when the entire fingerprint for a
phone is available.

CAIL finds its application in detecting the presence of
users in malls, or in classrooms as a part of an attendance
system. The significant contribution of this system is that it
provides performance comparable to exhaustive war-driving
but with reduced efforts, i.e.,:

o Reduction in war-driving efforts required during
fingerprinting of the environment. The cost of training
is reduced to the one-time fingerprinting of a primary
phone, which is leveraged by the new phones. There is
an 84% reduction in data collection efforts, discussed in
Section IV.

o CAIL deploys three independent modules comprising
indoor localization, cross-calibration, and recursive
bagging, detailed in Section III. This makes the system
modular as the cross-calibration and recursive bagging
algorithms can be applied irrespective of the localization
algorithm used.

The rest of the paper is organized as follows: Section II
details prior work done in the field of indoor localization,
primarily focusing on eliminating user effort for localization.
Section III describes CAIL localization and cross-calibration
algorithms, and how to select the best locations among
the available set, using recursive bagging. The localization
algorithm uses k Nearest Neighbor (kNN) [4], detailed in
Section IIlLA. The data collection phase and experiments
conducted to evaluate CAIL are described in Section IV. In
Section V, we discuss the results of our experiments and the
effectiveness of the proposed system in reducing site survey.
Section VI presents our concluding remarks.

II. RELATED WORK

The work done in the domain of indoor localization can
be classified into primarily two categories:



A. Model-based techniques

These techniques construct an RF propagation model like
the log-distance path loss (LDPL) model, which estimates
RF distances using RSS values. Lim et al. [5] deploy
WiFi trackers at predefined locations to measure RSS
values and generate an RSS map using LDPL model. Ji
et al. [6] also deploy WiFi trackers but instead employ a
more sophisticated ray tracing model. However, all these
model-based approaches are restricted by the necessity of
an available accurate model of the environment or building.
Even if such a model is available, the RF signal propagation
will be affected by other factors such as the building material
of walls. Each such factor leads to increased computation
costs, thus making localization nonviable. On the other hand,
without the information about the environment, accurate
model-based localization is not possible. For example, to
reduce laborious site survey, EZ [7] uses a configuration-free
indoor localization scheme, without any assumptions about
the RF environment, by modeling constraints of wireless
propagation and solving using a genetic algorithm. However,
these reduced measurements come at the cost of accuracy.

B. RF Fingerprinting based techniques

These techniques require fingerprinting the environment
at required locations and then comparing these stored
fingerprints with measurements from the phone for testing.
RADAR [1] uses RSS values at various locations from
APs for deterministic fingerprinting and matching. A more
accurate system, Horus [8] uses probability distributions for
each AP and location instead of absolute RSS measurements.
The matching is done using maximum likelihood.

PlaceLab [9] wuses radio beacons for localization.
ActiveCampus [10] uses a similar technique but with
added assumption of knowledge about the physical AP
locations. SurroundSense [11] utilizes ambiance features,
such as WiFi signals, camera, sound, and light for
indoor localization. Collating all these environmental factors
ignores energy considerations and may not work well for
locations lacking ambiance diversity like libraries, offices. A
peer assisted localization approach [12], leverages acoustic
ranging estimates among the peer phones combined with
WiFi-based localization to obtain an accurate distance
estimate. All these techniques require fingerprinting the
entire indoor space and maintenance of RF logs. DAIR
[13] tries to eliminate such constraints, but this requires a
dense deployment of USB-based adapters attached to desktop
machines for monitoring wireless network, hence, increasing
the pre-deployment effort.

A system, Zee [14] uses the walks that users take
through environments of interest on a daily basis and
the inertial sensors without explicit user intervention. It
combines this with the constraints provided by a blueprint
of the indoor space, taken as an external input, to discard
infeasible locations in the environment and finally converge
to the true location. A technique WILL [15], substitutes
the traditional labor-intensive site survey with a combination
of accelerometers to track user movements and WiFi
fingerprints. It relies on a physical floor plan for mapping
the logical plan constructed from fingerprint data to the actual
rooms. Additionally, there is continuous WiFi logging from

the phone which may lead to battery drainage and redundancy
in the huge amount of data produced.

The technique proposed in this paper doesn’t require
any external information about the environment, additional
sensors such as an accelerometer, a magnetometer, or acoustic
sensors to generate location prediction. The reduction in
effort in Zee and WILL systems is due to reduced direct
manual labor for WiFi measurements, not the actual data
collected or time consumed during collection. CAIL shrinks
the actual data for the user, in addition to reducing manual
labor, to a subset of the total environment and still produces
desired results within the whole environment.

III. ALGORITHM

CAIL model for cross-calibration uses two phases of the
generic fingerprinting algorithm. Training phase comprises
data collection at different locations for creating the
fingerprint. APs create a network, having a unique id which
is the Basic Service Set Identifier (BSSID). BSSID and
RSS wvalues for the primary phone from wireless APs
are recorded for multiple logs. The median RSS value
for each BSSID at each location is stored. This creates
training log for a phone, which is used by the localization
algorithm described in section III.A. Testing phase comprises
data collection at test locations, which are predicted by
the CAIL localization algorithm described in III.A. The
cross-calibration of new phones against the training phone for
inter-phone evaluation is done using CAIL cross-calibration
algorithm described in IIL.B. CAIL Recursive bagging
algorithm described in III.C is used for selecting a subset
of locations for cross-calibration. This reduces the effort of
data collection during testing phase to just 16%.

A. CAIL Localization Algorithm

CAIL localization algorithm is a smartphone-centric
approach for indoor localization. It doesn’t depend on the
transmit power of the access point but on the strength of
the received signal as we only log the RSS, measured in
dBm units. The methodology for location detection employs
k Nearest Neighbor (kNN), a clustering algorithm, commonly
used in machine learning for classification of data points. In
our scenario, these data points are median RSS values from
all BSSIDs and k =1. Using this technique, we find which
location amongst all the locations logged during training time
has an RSS value closest to the RSS value in the testing log
for a common BSSID. This is repeated for all the BSSIDs
common to training and testing logs, and they give their
respective predictions for a testing location. Finally, a mode
of the locations predicted by these BSSIDs gives the final
prediction of the location. Mode is a majority voting of
BSSIDs to predict a location, thus it increases the confidence
in the prediction.

Let us consider two locations: location 1, location 2 in our
training phase. At these locations, let nq, ne be the number
of BSSIDs detected, respectively. For all n; U ne BSSIDs,
we store the median RSS value of all the logged values for
that location and BSSID. So for location 1, each of the ny
BSSIDs has multiple RSS values logged at different times and
days. Radio signals undergo irregular multi-path reflections
that could cause variation in RSS values of the signals [10].
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Fig. 1: Linear regression curve to fit a line on RSS values of
primary versus a new phone for all common BSSIDs at 5 locations.

Storing and using the median of these logged values, helps
in eliminating the variation in data and the possibility of
error in RSS values arising from the multi-path effects. This
is repeated for ny BSSIDs at location 2. Finally, we have
training data with n; U ng BSSIDs and their respective
median RSS values at the two locations. If a BSSID is not
seen at a location, it’s value is set to infinity.

Now, in order to predict the location (i.e. either location
1 or 2) for an unknown test log during the testing phase,
CAIL stores the median RSS value for the testing location
corresponding to each BSSID in the test data. Only the
BSSIDs common to training and testing log are considered.

For a common BSSID j, the median RSS value of test
data is compared to median RSS values of the BSSID j
at locations 1 and 2. The closer of the two locations is
considered the predicted result for BSSID j and placed in
result set R. This is done for all common BSSIDs, say m at
all locations. So we have a result set R with m values that
are either location 1 or 2. The final predicted location is the
mode of all m locations in R.

The same approach can be easily scaled to a training
phase with more than 2 locations and predicting locations
of multiple test logs.

The scope of CAIL is limited to predict locations that were
logged during fingerprinting in training phase. Prediction of
locations that were never sampled during training phase is
out of the scope of this paper.

B. CAIL Cross-calibration Algorithm

It is not necessary that the entire training data for a
mobile phone is always available. Constructing such a data
is time-consuming and practically infeasible. Instead, one
can use primary phone for which the entire training data
is available, to create a fingerprint that can be used by
other phones to find their location. However, two phones at
the same location may not see the same RSS values due
to a difference in chip configurations, resulting in a signal
reception bias. The accuracy of location prediction is very
poor, if testing logs and training logs are not from the same
phone, as later described in section I'V.C and shown in Figure
5(c). This gives rise to the need of cross-calibration of a new
phone entering the environment against the primary phone,
to find a relationship between the RSS values seen by the two

n Locations (seed)
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Fig. 2: Recursive bagging demonstrating the selection of best bags
at every level, highlighted in black. Every bag at a level is passed
through cross-calibration and localization algorithms to determine
their accuracy. The best bag selected at a level is then used for
generating another set of b bags for the next level, by eliminating
d locations. This process converges when the bag size is less than,
or equal to d.

different phones. For a new phone, CAIL uses a minimum
number of training locations to cross-calibrate. Since data
from the new phone only includes RSS values from some
selected locations, the RSS values for the other locations need
to be derived using values from primary phone. For this,
linear regression is applied to RSS values of primary phone
and new phone to find the function to map RSS values of the
new phone to those of primary phone.

In CAIL cross-calibration algorithm, median RSS values
for every BSSID logged in the training phase for primary
phone are stored in array 7', and for new phone it is stored
in array U. The common BSSIDs between two arrays are
retained while the others are discarded from the arrays.
Now, linear regression is carried out between 7' and U.
The linear line obtained, as shown in Figure 1, provides
the slope and intercept values, which are used for mapping
between the primary phone and the new phone. If a location
p, BSSID j is logged only for the primary phone then,
RSS cross-calibrated value for new phone, RSS_newy;, is
obtained from the corresponding RSS value of the primary
phone, RSS_priy, using the equation:

RSS_prig; = mx RSS_newy + ¢ )

where, m is the slope, c is the intercept obtained from linear
regression and RSS_prip, RSS_newy are the median RSS
values for primary phone, new phone respectively, against
BSSID j, location p. This helps in generating a complete
set of RSS values for the new phone by mapping values of
primary phone for the locations for which new phone data
is not logged. When test RSS values are compared to this
set using the localization algorithm, the accuracy achieved is
as good as when all RSS values for new phone are available
through logging, as seen in section IV.D.
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Fig. 3: Deploying CAIL on a hypothetical floor with 9 locations
where (a) primary phone logs the entire floor (b) secondary
phone logs the floor and provides the 3 best locations, highlighted
as black squares, using recursive bagging (c) evaluation phone
only logs at the best locations identified and the RSS values for
the rest of the locations is obtained by cross-calibration against the
primary phone (d) evaluation phone logs at an unknown location
and obtains its location using the CAIL localization algorithm.

C. CAIL Recursive Bagging: Selecting a Subset of Locations
for Cross-calibration

Finding the minimum number of “good” training locations
for cross-calibration is a challenging task. To identify the
good locations for cross-calibration, we employ a technique
of recursive bagging on a phone called secondary phone.
This phone provides the best locations to log in an
environment. We have shown in section IV.D that the
locations identified as good, for the secondary phone can be
used for any other phone, say evaluation phone, to produce
satisfactory accuracy. CAIL recursive bagging algorithm
starts with a set or bag of locations of a size say, S as
seed. From this, some locations are randomly picked without
replacement, to generate a new bags of size S". b such bags
are generated. These b bags form the Level 1 of the algorithm.
Algorithm picks one of the b bags and uses the locations
of selected bag as an input to the CAIL cross-calibration
algorithm described in III.B. This generates the RSS values
for the locations that are not present in the bag and creates
the complete RSS fingerprint. The complete RSS fingerprint
is used to predict the test log location using the CAIL
localization algorithm described in III.A. This is repeated for
all the b bags. The bag that gives the best accuracy at level 1,
becomes the new set of locations from which the next level of
b bags can be created. This recursive process reduces the size
of the bag by a fixed amount d at every level and converges
when the size becomes equal to or less than d.

Randomization in generating b bags at each level reduces
the effort to find the best bag. This is done by choosing
b, such that the there is a sufficient representation of all
locations at a level, among the b bags in the next level.
Further, the parameters b and d along with the seed bag
size, S can be adjusted to speed up the process. Thus, the
technique can be applied to even larger environments with
more locations without an increase in cost. On the other hand,
brute force to find a bag of similar good locations in such
a case would lead to an exponential effort. For our problem,

Model CPU

Motorola Moto E XT1022 Dual-core 1.2 GHz Cortex-A7

Samsung S6802 Galaxy Ace Duos Broadcom BCM21553 832 MHz

Quad-core 1.4 GHz Cortex-A9

Samsung 19300 Galaxy S III

TABLE I: Configuration of mobile phones used in the experiments.

b was chosen to be 10, d was 5 and the seed bag size was
30. So at each level, 10 random bags of 5 fewer locations
than the previous level are created. Figure 2 describes this
technique.

IV. EVALUATION

For evaluation of CAIL, a total of 3 phones have been used:
primary phone for creating RSS fingerprint; secondary
phone for finding the best locations, which is 5 in our
case; evaluation phone, for testing the efficacy of locations
identified by secondary phone and finding the accuracy
of indoor localization. Figure 3 describes the CAIL indoor
localization system for a hypothetical floor with 9 locations,
illustrating how any new phone leverages the efforts of a
primary phone to generate its RSS fingerprint, and finally
gets a prediction for an unknown location.

Section IV.B, IV.C, and IV.D detail the performance of
CAIL for the three phones. The positional error is described
in blocks. These blocks are mapped to a size of 7x8
feet?. This size could vary depending upon the size of the
environment being logged and the precision required. For our
test environment, this block size worked well. Since CAIL’s
target applications are based on environments such as malls,
classrooms, we haven’t described the error explicitly in terms
of distance. Our use-cases include attendance application,
that will require the student to be present in the classroom,
irrespective of where the student is sitting in the classroom.

Faculty offices

Lab

Stairs

Lab 1

x : Points of logging
[ :Locationof APs

Fig. 4: Floor map of second floor R&D wings with AP and logging
locations.

A. Collection of Data

The data was collected for 30 uniformly distributed
locations inside the Academic Block, the main building of
IITT-Delhi. The specifications of the 3 mobile phones used
are tabulated in Table L.

Locations included places, such as canteen, classrooms,
and offices that have furniture, such as chairs and desks, to
open areas like corridors and lobbies. The building contains
APs catering to a 1000+ student body, administrative staff,
and faculty. These locations were uniformly distributed across
the six floors of the building. Figure 4 illustrates the floor
map of the second floor R&D wings of the building. The
logging varied from 10 AM in the morning to 11 PM at
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Fig. 6: Bar graph showing the percentage of locations correctly identified and those predicted within a few blocks of the original location
for a) evaluation phone intra-phone experiment b) evaluation phone inter-phone experiment; a block is approximately 7x8 feet®.

Phone Accuracy for Effort in Accuracy of Effort in Accuracy of Effort in Baseline Effort in
bag of size 5 logging bag of size 10 logging bag of size 15 logging Accuracy logging

secondary 75.71 25 min 68.57 50 min 65.71 75 min 81.43 150 min
evaluation 73.58 25 min 67.92 50 min 66.03 75 min 84.90 150 min

TABLE II: Accuracy obtained on recursive bagging on secondary phone and using these locations for evaluation phone for

cross-calibration.

night. The RSS values in dBm were logged at a frequency
of 1/6 Hz, i.e., 1 WiFi scan per 6 seconds, multiple times
over a period of 3 months at all the locations. This is done
to eliminate any variations in RSS signal arising due to
changes in the environment, from factors like number of
people in a location at any given time, furniture, or time
of the day. These variations are eliminated by storing only
the median RSS values. Each data log collected at a location
spanned 5 minutes for the training set and 2 minutes for the
testing set. The data contained 106 testing data samples for
evaluation phone and 70 for secondary phone, logged at
the 30 locations, at different times, over multiple days.

B. Intra-phone Experiments

Using the CAIL localization algorithm, the baseline
accuracy was calculated for the secondary phone by running
the testing data of the secondary phone against its own
complete fingerprint of 30 locations. A similar baseline
accuracy was calculated for the evaluation phone separately.
The accuracy for both phones was quite high with 81% of
the testing locations correctly identified in secondary phone
and 85% in the evaluation phone.

C. Inter-phone Experiments

Inter-phone experiments involved running testing data of
secondary and evaluation phones against training data of
primary phone. To achieve the same accuracy, albeit with
minimal training effort, the cross-calibration algorithm used 5
locations, a subset of the total 30 locations, as input. These 5
locations were obtained after recursive bagging of the training
data for the secondary phone. The linear curve derived
from cross-calibration between RSS values of 5 locations
of primary and secondary phones was used to derive the
remaining for secondary phone from those of primary
phone. Next, CAIL localization algorithm was deployed on
secondary phone using the testing data. The accuracy after
cross-calibration on secondary phone was found to be 76%
shown in Figure 5(b). This was comparable to the accuracy
of 81% obtained with a complete logged fingerprint for 30
locations as shown in Figure 5(a). Further, this is much
higher than 37% accuracy when test data of secondary phone
is tested against training data of pr¢mary phone without
cross-calibration as shown in Figure 5(c). This shows that the
cross-calibration eliminates the signal reception bias across
different phones.



D. Results on a New Mobile Phone

To test the efficacy of the subset of locations achieved
by recursive bagging of secondary phone, the inter-phone
experiment was carried out on the evaluation phone using
training logs at the subset of locations (15, 10 and 5).
The evaluation phone’s accuracy of localization using 5
locations derived for secondary phone, was 74% as shown
in Figure 6(b). The accuracy was 85% when tested with its
own complete fingerprint of 30 locations as shown in Figure
6(a). This shows that the 5 locations obtained for one phone
are indeed sufficient to make an accurate location prediction,
independent of the phone. Thus, we do not require the entire
fingerprint of a new phone to achieve good accuracy, greatly
diminishing the task of data collection on new phones.

V. RESULTS AND OBSERVATIONS

The intra-phone experiments yielded results with an
accuracy of more than 80%. The inter-phone experiment
on secondary phone yielded a comparable accuracy of
70% on an average after cross-calibration using subsets of
locations. Furthermore, when applied to evaluation phone,
the same locations gave accuracy as high as 74%. The
data and time required for logging 5 locations is 1/6™
that of logging for the entire building of 30 locations. A
reduction from a total of 150 minutes to merely 25 minutes
has been achieved, as tabulated in Table II. The accuracy
given in the table are the values when the prediction was
on spot. A detailed report of the error in prediction for
cross-calibration for secondary phone is given in Figure
5(b) and for evaluation phone in Figure 6(b). The error is
represented in terms of blocks of separation between actual
and predicted location. The effects of recursive bagging are
clearly seen on secondary phone results. As expected, the
accuracy increases as we downsample locations from 15 to 5.
Removal of outliers at each downsampling leads to a better
set of locations for cross-calibration, giving highest accuracy
for the cross-calibration using only 5 locations. The locations
chosen using recursive bagging on secondary phone yielded
an accuracy of 74% on evaluation phone. This reinforces
the existence of “bad” locations for WiFi logging that must
be avoided and certain “good” locations that work for most
of the phones. Dynamic changes in the environment, such as
nearby moving objects may contribute to accuracy drop that
is largely handled by periodic logging and storing the median
RSS values. Thus, for a drop of 84% in work, there is just a
drop of 10% in accuracy.

This approach when scaled to enterprises with larger
environments and hundreds of cross-calibrated phones would
lead to a huge cut-down of effort while maintaining a minor
accuracy drop among all phones.

VI. CONCLUSION

In this paper we presented CAIL, a novel approach to
significantly reduce the effort required for indoor localization
using existing WiFi infrastructure. The users of CAIL can
easily leverage the one-time fingerprinting done by a single
phone and almost instantly use the system for location
prediction, irrespective of the mobile phone model they
carry. Unlike traditional RF fingerprinting approaches, CAIL
does not require any pre-deployment effort or constraints

extraneous to the phone. It identifies the best locations to log
at, using recursive bagging and employs cross-calibration to
map a new phone against the phone used for site survey. Both
cross-calibration and recursive bagging modules of CAIL can
be used with any existing localization algorithm that uses
RF, making CAIL a modular system. We have evaluated
the proposed algorithm on data logged from user’s phone
at just 5 locations in a building and it has shown promising
results with an accuracy of around 76%, comparable to 81%
accuracy on complete site survey.

Future work will extend the localization algorithm to
predict locations that were not logged during the training
phase, using interpolation based techniques to generate RSS
values for these locations. We will also research other ways
of identifying the good locations for cross-calibration. These
could be locations showing less variation in RSS values, and
those with a larger density of APs.
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